
notes of “tour of c++”
Hobo Chen

March 9, 2016

Abstract
The license of this document is CC-BY-NC-ND.
If you think this PDF helps a lot, please donate some money to the kids live in west and middle

china. They can not afford to go to school, letting alone to learn C++.
If you want to contact me for any questions or suggestions, please send a email to hobochen96@gmail.com

.

Contents
Chap 1 Basics 4

Zen . 4
function overload . 4
sizeof . 4
ini . 4
auto . 4
scope . 5
constants . 5
range for statement . 5
reference . 5
nullptr . 6

Chap 2 User-Defined Types 6
classes and structs . 6
union . 6
eunm . 7

Chap 3 Modularity 7
exception . 7
rethrow exception . 7
static_assert . 7

Chap 4 Classes 8
std::initializer_list . 8
pure virtual functions . 8
abstract type . 8

CONTENTS 2

virtual functions . 8
explicit overiding . 8
benefits of inheritance . 8
copy and move . 8
move . 9
explicit . 10
suppressing operations . 11
Zen - GC and RAII . 11

Chap 5 Template 11
begin and end . 11
instantiation . 11
value argument . 12
function template . 12
concepts and generic programming . 12
concept – C++ 17 . 12
regular type . 13
function object . 13
lambda expr . 13
variadic template . 14
aliases . 14

Chap 6 Lib Overview 14

Chap 7 String and Regex 15
mutable . 15
short-string optimization . 15
basic_string . 16
regex . 16
smatch . 16
regex notation . 16
special char . 16
repeated . 16
character classes . 17
c++ var names . 17
greedy and non-greedy . 17
subpattern . 18
regex_iterator . 18

Chap 8 I/O 18
io state . 18
user defined types . 18
filestream . 18
string stream . 19

Chap 9 Containers 19
vector.reserve() . 19
store pointer | value? . 19
vector range checking . 19
Other containers . 19

Chap 11 Utilities 19

CONTENTS 3

unique_ptr . 19
shared_ptr . 19
make_shared() . 20
<array> . 20
bitset . 20
bind() . 20
function . 20
type function . 21

Chap 12 Numberics 21
<cmath> . 21
<numeric> . 21
random . 21

Chap 13 Cocurrency 21
thread . 22
const reference . 22
mutex . 22
mutex or pass-by-value ? - ZEN . 23
<chrono> . 23
mutex . 24
future and promise . 24
packaged_task . 25
async() . 25
threads at most . 26

Chap 14 History and Compatibility 26
history . 26
timeline . 26
early years . 27
iso c++ . 27
c++11 - language feature . 27
c++11 - STL component . 28
c++11 - deprecated feature . 29
c++11 - cast . 29
c/c++ compatibility . 29
sidlings . 29
c -> c++ . 29
style prob . 30
void* . 30

0 CHAP 1 BASICS 4

Chap 1 Basics
Zen

Basic mechanisms for organizing code into a program are most often seen in C, sometimes called procedural
programming.
C++ is compiled, statically typed.
ISO-C++ standard defines two kinds of entities :

• Core language features
• Standart lib components

an instance of C++ program
#include <bits/stdc++.h> // include or "import" all the c++ lib,

// supported by clang and gcc

using namespace std; // make names from std visible without std::

int main() { // essential

return 0; // unix and linux based os often uses that
// return value, but windows do not

}

function overload

If two functions can be called, but neither is better than other, the call is deemed ambiguous and the compiler
gives an error. For example:
void print(double, int)
void print(int, double)

sizeof

int a;
char b;
cout << sizeof(a) << " " << sizeof(b) << endl;

// sizeof returns Byte, not bit; so it is 4 1

ini

Using {} to initialize is suggested, = is the traditional way of C.
When defining a variable, you don’t actually need to state its type explicitly when it can be deduced from
the initializer:
auto b = true; // a bool
auto ch = 'x'; // a char
auto i = 123; // an int
auto d = 1.2; // a double
auto z = sqrt(y); // z has the type of whatever sqr t(y) returns

auto

We use auto where we do not have a specific reason to mention the type explicitly.
Specific reasons:

0 CHAP 1 BASICS 5

• The definition is in a large scope where we want to make the type clearly visible to readers of our code.
• We want to be explicit about a variable’s range or precision (e.g., double rather than float).

Using auto is to avoid redundancy and writing long type names. This is especially important in generic
programming where the exact type of an object can be hard for the programmer to know and the type names
can be quite long.

scope

A declaration introduces its name into a scope:
• Local scope: A name declared in a function or lambda is called a local name. Its scope extends from

its point of declaration to the end of the block in which its declaration occurs. A block is delimited by
a { } pair. Function argument names are considered local names.

• Class scope: A name is called a member name (or a class member name) if it is defined in a class ,
outside any function, lambda , or enum class. Its scope extends from the opening { of its enclosing
declaration to the end of that declaration.

• Namespace scope: A name is called a namespace member name if it is defined in a namespace outside
any function, lambda, class, or enum class . Its scope extends from the point of declaration to the
end of its namespaces.

constants

C++ supports two notions of immutability:
• const: meaning roughly I promise not to change this value. This is used primarily to specify

interfaces, so that data can be passed to functions without fear of it being modified. The compiler
enforces the promise made by const.

• constexpr: meaning roughly to be evaluated at compile time. This is used primarily to specify
constants, to allow placement of data in read-only memory (where it is unlikely to be corrupted) and
for performance.

Also constexpr could be a kind of return value of a function, and the paras could be mutable.
constexpr double sqr(double x) {

return x * x;
}

range for statement

int x[] = {1,2,3,4,5};
// no need of size of array when ini it with a list

for (auto a : v} {
cout << a << endl;

}

The first range-for-statement can be read as “for every element of v, from the first to the last, place a copy
in x and print it.” Note that we don’t hav e to specify an array bound when we initialize it with a list. The
range-for-statement can be used for any sequence of elements. If do not want copying, use auto &a : v
instead.

reference

In a declaration, the unary suffix & means reference to. A reference is similar to a pointer, except that you
don’t need to use a prefix * to access the value referred to by the reference.
Also, a reference cannot be made to refer to a different object after its initialization. That means, it can not
be computed, such as normal use of pointer *(pos++).

0 CHAP 2 USER-DEFINED TYPES 6

nullptr

Trying to ensure that a pointer always points to an element so that dereferencing it is valid, so there is the
nullptr. There is only one nullptr shared by all pointer types.
In older code, 0 or NULL is typically used instead of nullptr. However, using nullptr eliminates potential
confusion between integers (such as 0 or NULL) and pointers (such as nullptr).
example.
int charcount(char* p, char x) {

if (p == nullptr) return 0;
int cnt = 0;
while (p != nullptr) {

if (*p == x) cnt++;
}
return cnt;

}

Chap 2 User-Defined Types
We call the types that can be built from the fundamental types, the const modifier, and the declarator
operators built-in types.

classes and structs

default of members of classes is private, which is public in struct.

union

A union is a struct in which all members are allocated at the same address so that the union occupies only
as much space as its largest member.
enum Type { double, int };
struct hobo {

string name;
Type t;
double d1;
int t2;

};
// d1, t2 can never be used at the same time
// so may use a union,

union Value {
double d1;
int t2;

};
// c++ doesn't keep track of which kind of value is held

struct hobo {
string name;
Type t;
Value v; // depends on t == double, or t == int

};

Maintaining the correspondence between a type field (here, t) and the type held in a union is errorprone.
At the application level, abstractions relying on such tagged unions sare common and useful, but use of naked
unions is best minimized.

0 CHAP 3 MODULARITY 7

eunm

By default, an enum class has only assignment, initialization, and comparisons (e.g., == and <) defined.
However, an enumeration is a user-defined type so we can define operators for it.
enum class Traffic_light {red, yellow, red};
Traffic_light& operator++(Traffic_light& t) {

// prefix increment: ++
switch (t) {

case Traffic_light::green:
return t = Traffic_light::yellow;

case Traffic_light::yellow:
return t = Traffic_light::red;

case Traffic_light::red:
return t = Traffic_light::green;

}
}
Traffic_light next = ++light;

The enumerators from a “plain” enum are entered into the same scope as the name of their enum and
implicitly converts to their integer value.(begins at 0)

Chap 3 Modularity
exception

try {
// try sth.

}
catch (_exception) {

// handling
}

rethrow exception

void test()
{

try {
Vector v(−27);

}
catch (std::length_error) {

cout << "test failed: length error\n";
throw; // rethrow

}
catch (std::bad_alloc) {

// Ouch! test() is not designed to handle memory exhaustion
std::terminate(); // terminate the program

}
}

static_assert

Exceptions report errors found at run time. If an error can be found at compile time, it is usually preferable
to do so. In general, static_assert(A,S) prints S as a compiler error message if A is not true.
The most important uses of static_assert come when we make assertions about types used as parameters
in generic programming. For runtime-checked assertions, use exceptions.

0 CHAP 4 CLASSES 8

Chap 4 Classes
std::initializer_list

The std::initializer_list used to define the initializer-list constructor is a standard-library type known to the
compiler.

pure virtual functions

class Container {
public:

virtual double& operator[] (int) = 0;
virtual int size() const = 0;
virtual Container() {}

};

The curious =0 syntax says the function is pure virtual; that is, some class derived from Container must
define the function.

abstract type

A class with a pure virtual function is called an abstract class.

virtual functions

When h() calls use() , List_container’s operator[]() must be called. When g() calls use(), Vec-
tor_container ’s operator[]() must be called.
To achieve this resolution, a Container object must contain information to allow it to select the right function
to call at run time. The usual implementation technique is for the compiler to convert the name of a virtual
function into an index into a table of pointers to functions.
That table is usually called the virtual function table or simply the vtbl.

explicit overiding

void draw() override;

If has not overridden something, you will get a compile error.

benefits of inheritance

• interface inheritance
• implementation inheritance

unique_ptr

See in Utilities.

copy and move

When a class is a resource handle – that is, when the class is responsible for an object accessed through a
pointer – the default memberwise copy is typically a disaster.
Copying of an object of a class is defined by two members: a copy constructor and a copy assignment.

0 CHAP 4 CLASSES 9

class Vector {
private:

double* elem;
// elem points to an array of sz doubles

int sz;
public:

Vector(int s);
// constructor: establish invariant, acquire resources

Vector() { delete[] elem; }
// destructor: release resources

Vector(const Vector& a);
// copy constructor

Vector& operator= (const Vector& a);
// copy assignment

double& operator [](int i);
const double& operator [](int i) const;
int size() const;

};

Vector::Vector(const Vector& a) : elem{new double[a.sz]}, sz{a.sz} {
// allocate space for elements
for (int i = 0; i != sz; ++i) // copy elements

elem[i] = a.elem[i];
} // copy constructor

Vector& Vector::operator = (const Vector& a) {
// copy assignment
double* p = new double[a.sz];
for (int i = 0; i != a.sz; ++i)

p[i] = a.elem[i];
delete[] elem; // delete old elements
elem = p;
sz = a.sz;
return *this;

}

The name this is predefined in a member function and points to the object for which the member function is
called.

move

Vector operator + (const Vector& a, const Vector& b) {
if (a.size() != b.size())

throw Vector_size_mismatch{};
Vector res(a.size());
for (int i=0; i != a.size(); ++i)

res[i] = a[i] + b[i];
return res;

}

void f(const Vector& x, const Vector& y, const Vector& z) {
Vector r;
r = x + y + z;

// That would be copying a Vector at least twice
}

class Vector {
Vector(const Vector& a); // copy constructor
Vector& operator = (const Vector& a); // copy assignment
Vector(Vector&& a); // move constructor

0 CHAP 4 CLASSES 10

Vector& operator = (Vector&& a); // move assignment
};
Vector::Vector(Vector&& a) : elem{a.elem}, sz{a.sz} {

// "get" the element from a
a.elem = nullptr;

// now has no element
a.sz = 0;

}

The && means rvalue reference and is a reference to which we can bind an rvalue. An rvalue is – to a first
approximation – a value that can’t be assigned to, such as an integer returned by a function call.
A move operation is applied when an rvalue reference is used as an initializer or as the right-hand side of an
assignment.
After a move, a moved-from object should be in a state that allows a destructor to be run. Typically, we
should also allow assignment to a moved-from object.
The standard-library function move()returns doesn’t actually move anything. Instead, it returns a reference
to its argument from which we may move – an rvalue reference.
essential operations, There are five situations in which an object is copied or moved:

• As the source of an assignment
• As an object initializer
• As a function argument
• As a function return value
• As an exception

class Y {
Public:

Y(Sometype);
Y(const Y&) = default;

// do allow auto-generating the contructor
Y(Y&&) = default;

// do allow auto-generating the contructor as well
};

explicit

struct vec {
private:

int sz;
double* elem;

public:
vec() { }
vec(int s) : sz{s}, elem{new double[s]} {

for (int i = 0; i != s; i++)
elem[i] = 0;

}
};

int main() {
vec hobo = 7; // hobo has 7 elements
return 0;

}

This is typically considered unfortunate, and the standard-library vector does not allow this int-to-vector
conversion.
explicit should be used.

explicit vec(int s) : sz{s}, elem{new double[s]} {
for (int i = 0; i != s; i++)

0 CHAP 5 TEMPLATE 11

elem[i] = 0;
}

vec hobox(7); // hobox has 7 elements
vec hobo = 7; // ce

Using explicit everytime if the constructor has only one parameter, unless there is some other good reason.

suppressing operations

class Shape {
Shape(const Shape&) = delete; // no copy operations
Shape& operator = (const Shape&) = delete;
Shape(Shape&&) = delete; // no move operations
Shape& operator = (Shape&&) = delete;

};

Now an attempt to copy a Shape will be caught by the compiler. If you need to copy an object in a class
hierarchy, write a virtual clone function.

Zen - GC and RAII

In very much the same way as new and delete disappear from application code, we can make pointers
disappear into resource handles. In both cases, the result is simpler and more maintainable code, without
added overhead. In particular, we can achieve strong resource safety; that is, we can eliminate resource leaks
for a general notion of a resource. Examples are vector s holding memory, thread s holding system threads,
and fstream s holding file handles.
In many languages, resource management is primarily delegated to a garbage collector. C++ also offers
a garbage collection interface so that you can plug in a garbage collector. However, garbage collection is
considered as the last alternative after cleaner, more general, and better localized alternatives to resource
management have been exhausted.
Garbage collection is fundamentally a global memory management scheme. Clever implementations can
compensate, but as systems are getting more distributed (think multicores, caches, and clusters), locality is
more important than ever.
Also, memory is not the only resource. A resource is anything that has to be acquired and (explicitly or
implicitly) released after use. Examples are memory, locks, sockets, file handles, and thread handles. A good
resource management system handles all kinds of resources. Leaks must be avoided in any long-running
systems, but excessive resource retention can be almost as bad as a leak. For example, if a system holds on
to memory, locks, files, etc., for twice as long, the system needs to be provisioned with potentially twice as
many resources.
Before resorting to garbage collection, systematically use resource handles: Let each resource have an owner in
some scope and by default be released at the end of its owners scope. In C++, this is known as RAII (Resource
Acquisition Is Initialization) and is integrated with error handling in the form of exceptions. Resources can
be moved from scope to scope using move semantics or “smart pointers”, and shared ownership can be
represented by “shared_ptr”.

Chap 5 Template
begin and end

instantiation

Templates are a compile-time mechanism, so their use incurs no run-time overhead compared to hand-crafted
code. In fact, the code generated for Vector is identical to the code generated for the version of Vector from

0 CHAP 5 TEMPLATE 12

Chapter 4. Furthermore, the code generated for the standard-library vector is likely to be better (because
more effort has gone into its implementation).

value argument

template<typename T, int N>
struct Buffer {

using value_type = T;
constexpr int size() { return N; }
T Q[N];

};

Buffer<char,1024> glob;
// global buffer of characters (statically allocated)

void fct() {
Buffer<int,10> buf;

// local buffer of integers (on the stack)
}

function template

template<typename Container, typename Value>
Value sum(const Container& c, Value v) {

for (auto x : c)
v += x;

return v;
}

void user(Vector<int>& vi,
std::list<double>& ld,
std::vector<complex<double>>& vc) {

int x = sum(vi,0);
// the sum of a vector of ints (add ints)

double d = sum(vi,0.0);
// the sum of a vector of ints (add doubles)

double dd = sum(ld,0.0);
// the sum of a list of doubles

auto z = sum(vc,complex<double>{});
// the sum of a vector of complex<double>
// the initial value is {0.0,0.0}

}

concepts and generic programming

Templates offer:
• The ability to pass types (as well as values and templates) as arguments without loss of information.

This implies excellent opportunities for inlining, of which implementations take great advantage.
• Delayed type checking (done at instantiation time). This implies opportunities to weave together

information from different contexts.
• The ability to pass constant values as arguments. This implies the ability to do compile-time computa-

tion.

concept – C++ 17

So, sum() requires that its first template argument is some kind of container and its second template argument
is some kind of number. We call such requirements concepts. Unfortunately, concepts cannot be expressed

0 CHAP 5 TEMPLATE 13

directly in C++11. All we can say is that the template argument for sum() must be types. There are
techniques for checking concepts and proposals for direct language support for concepts, but both are beyond
the scope of this note.

regular type

• can be default constructed.
• can be copied (with the usual semantics of copy yielding two objects that are independent and compare

equal) using a constructor or an assignment.
• can be compared using == and != .
• doesn’t suffer technical problems from overly clever programming tricks.

function object

template<typename T>
class Less_than {

const T val;
// value to compare against

public:
Less_than(const T& v) :val(v) { }
bool operator()(const T& x) const { return x < val; }

// call operator
};

template<typename C, typename P>
int count(const C& c, P pred) {

int cnt = 0;
for (const auto& x : c)

if (pred(x))
++cnt;

return cnt;
}

void f(const Vector<int>& vec,
const list<string>& lst,
int x, const string& s) {

cout << "number of values less than " << x
<< ": " << count(vec, Less_than<int>{x})
<< '\n';

cout << "number of values less than " << s
<< ": " << count(lst, Less_than<string>{s})
<< '\n';

}

The beauty of these function objects is that they carry the value to be compared against with them. We
don’t have to write a separate function for each value (and each type), and we don’t have to introduce nasty
global variables to hold values.
Also, for a simple function object like Less_than inlining is simple. So that a call of Less_than is far more
efficient than an indirect function call.

lambda expr

void f(const Vector<int>& vec,
const list<string>& lst,
int x, const string& s) {

cout << "number of values less than " << x
<< ": " << count(vec, [&](int a) {return a < x;})

0 CHAP 6 LIB OVERVIEW 14

<< '\n';
cout << "number of values less than " << s

<< ": " << count(lst, [&](const string& a) {return a < s;})
<< '\n';

}

The notation [&](int a){ return a < x; } is called a lambda expression. It generates a function object
exactly like Less_than{x} . The [&] is a capture list specifying that local names used (such as x) will be
accessed through references. Had we wanted to “capture” only x , we could have said so: [&x] . Had we
wanted to give the generated object a copy of x , we could have said so: [=x].
Capture nothing is [] , capture all local names used by reference is [&] , and capture all local names used by
value is [=] .

variadic template

void f() { } // do nothing

template<typename T>
void f(T t) {

cout << t << " ";
}

template<typename T>
void g(T t) {

cout << t << " ";
}

template<typename T, typename ... Tail>
void f(T head, Tail... tail) {

g(head); // do something to head
f(tail...); // try again with tail

}

int main () {
cout << "first: ";
f(1, 2.2, "hello");
cout << "\nsecond: ";
f(0.2, 'c', "yuck!", 0, 1, 2);
cout << "\n";
return 0;

}

aliases

For example, the standard header <cstddef> contains a definition of the alias size_t , maybe:
using size_t = unsigned int;

Chap 6 Lib Overview
string, ostream, vector, map, unique_ptr, thread, regex, complex
<algorithm> copy() , find() , sort()

<array> array

<chrono> duration , time_point

0 CHAP 7 STRING AND REGEX 15

<cmath> sqrt() , pow()

<complex> complex , sqrt() , pow()

<forward_list> forward_list

<fstream> fstream , ifstream , ofstream

<future> future , promise

<ios> hex , dec , scientific , fixed , defaultfloat

<iostream> istream , ostream , cin , cout

<map> map , multimap

<memory> unique_ptr , shared_ptr , allocator

<random> default_random_engine , normal_distribution

<regex> regex , smatch

<string> string , basic_string

<set> set , multiset

<sstream> istrstream , ostrstream

<stdexcept> length_error , out_of_range , runtime_error

<thread> thread

<unordered_map> unordered_map , unordered_multimap

<utility> move() , swap() , pair

<vector> vector

Chap 7 String and Regex
mutable

string name = "Niels Stroustrup";
void m3() {
string s = name.substr(6, 10);

// s = "Stroustrup"
name.replace(0, 5, "nicholas");

// name becomes "nicholas Stroustrup"
name[0] = toupper(name[0]);

// name becomes "Nicholas Stroustrup"
}

short-string optimization

Short string values are kept in the string object itself, and only longer strings are placed on free store.

0 CHAP 7 STRING AND REGEX 16

When lots of strings of differing lengths are used, memory fragmentation can result. That why short-string
optimization has implemented.

basic_string

string is just an alias of basic_string<char>.

regex

regex_match, regex_search, regex_replace, regex_iterator, regex_token_iterator
The regular expression syntax and semantics are designed so that regular expressions can be compiled into
state machines for efficient execution. The regex type performs this compilation at run time.

smatch

An smatch is a vector of sub-matches of type string. The resule of a regex_search() is a collection of
matches, typically represented as an match.
void search() {

regex pat {"\\w{2}\\s*\\d{5}(-\\d{4})?"};
int lineno = 0;
for (string line; getline(cin, line);) {

lineno++;
smatch matches;
if (regex_search(line, matches, pat))

cout << lineno << ": " << matches[0] << endl;
}

}

regex notation

regex lib can recognize several variants of the notation for regular expression. It uses ECMA-Regex Standard.

special char

• . Any single character (a “wildcard”)
• [Begin character class
•] End character class
• { Begin count
• } End count
• (Begin grouping
•) End grouping
• \ Next character has a special meaning
• * Zero or more (suffix operation)
• + One or more (suffix operation)
• ? Optional (zero or one) (suffix operation)
• | Alternative (or)
• ˆ Start of line; negation
• $ End of line

repeated

A pattern can be optional or repeated (the default is exactly once) by adding a suffix.
• {n} exactly n times

http://ecma-international.org/ecma-262/5.1/#sec-15.10

0 CHAP 7 STRING AND REGEX 17

• {n, } n or more times
• {n, m} at least n and at most m times And * + ?.

character classes

• alnum Any alphanumeric character
• alpha Any alphabetic character
• blank Any whitespace character that is not a line separator
• cntrl Any control character
• d Any decimal digit
• digit Any decimal digit
• graph Any graphical character
• lower Any lowercase character
• print Any printable character
• punct Any punctuation character
• s Any whitespace character
• space Any whitespace character
• upper Any uppercase character
• w Any word character (alphanumeric characters plus the underscore)
• xdigit Any hexadecimal digit character
• \d A decimal digit [[:digit:]]
• \s A space (space, tab, etc.) [[:space:]]
• \w A letter (a-z) or digit (0-9) or underscore (_) [_[:alnum:]]
• \D Not\d [ˆ[:digit:]]
• \S Not\s [ˆ[:space:]]
• \W Not\w [ˆ_[:alnum:]]

c++ var names

[:alpha:][:alnum:]*;
// wrong: characters from the set ":alph" followed by ...

[[:alpha:]][[:alnum:]]*;
// wrong: doesn’t accept underscore ('_' is not alpha)

([[:alpha:]]|_)[[:alnum:]]*;
// wrong: underscore is not part of alnum either

([[:alpha:]]|_)([[:alnum:]]|_)*;
// OK, but clumsy

[[:alpha:]_][[:alnum:]_]*;
// OK: include the underscore in the character classes

[_[:alpha:]][_[:alnum:]]*;
// also OK

[_[:alpha:]]\w*;
// \w is equivalent to [_[:alnum:]]

greedy and non-greedy

A suffix ? after any of the repetition notations(above) make the pattern matcher non-greedy. And the
default is greedy.

0 CHAP 8 I/O 18

subpattern

A group (a subpattern) potentially to be represented by a sub_match is delimited by parentheses. If you
need parentheses that should not define a subpattern, use (? instead of (.

regex_iterator

for (void test() {
string input = "aa as; asd ++eˆasdf asdfg";
regex pat {R"(\s+(\w+))"};
for (sregex_iterator p(input. begin(), input.end(), pat);

p!=sregex_iterator{}; ++p
)

cout << (∗p)[1] << '\n';
}

Chap 8 I/O
io state

while (cin) {
for (int i; cin >> i;) {

// ... use the integer ...
}
if (cin.eof()) {

// .. all is well we reached the end-of-file ...
}
else if (cin.fail()) { // a potentially recoverable error

cin.clear(); // reset the state to good()
char ch;

if (cin>>ch) { // look for nesting represented by { ... }
switch (ch) {

case '{':
// ... start nested structure ...
break;

case '}':
// ... end nested structure ...
break;
default:
cin.setstate(ios_base::failbit); // add fail() to cin’s state

}
}

}
// ...

}

user defined types

ostream& operator << (ostream& os, const Entry& e) {
return os << "{\"" << e.name << "\", " << e.number << "}";

}

filestream

In fstream, the standard library provides streams to and from a file.

0 CHAP 9 CONTAINERS 19

• ifstreams for reading from a file
• ofstreams for writing to a file
• fstreams for reading from and writing to a file

string stream

In <sstream>, the standard library provides streams to and from a string:
• istringstreams for reading from a string
• ostringstreams for writing to a string
• stringstreams for reading from and writing to a string.

Chap 9 Containers
A class with the main purpose of holding objects is commonly called a container.

vector.reserve()

It can not improve the performance, as allocation method is heuristic.

store pointer | value?

If there is a class hierachy that relies on virtual functions to get polymorphic behavior, do not store objects
directly. Just store a pointer or smart pointer.

vector range checking

vector does not guarantee range checking in subscript, but in .at().

Other containers

During the OI/ACM time, I am quite familiar with set, map, or unordered_. And I strongly recommends
you to get some info of pb_ds, which is supported in libc++, algorithms implement there are more effcient
than in STL. For instance, unordered_set in STL uses link-list to deal with hash crashes, which is slow.

Chap 11 Utilities
unique_ptr

It is to represent unique ownership. The most basic use of these “smart pointers” is to prevent memory leaks
caused by careless programming, such as early returns and etc.
Ironically, we could have solved the problem simply by not using a pointer and not using new.

shared_ptr

The shared_ptr is similar to unique_ptr except that shared_ptrs are copied rather than moved. The
shared_ptrs for an object share ownership of an object and that object is destroyed when the last of its
shared_ptrs is destroyed.

0 CHAP 11 UTILITIES 20

make_shared()

Creating an object on the free store and then passing a pointer to it to a smart pointer is logically bit odd
and can be verbose. To compensate, the standard library (in <memory>) provides a function make_shared().
shared_ptr<S> p1 {new S {1, "Ankh Morpork", 4.65}};
auto p2 = make_shared<S>(2, "Oz", 7.62);

template<typename T, typename ... Args>
unique_ptr<T> make_unique(Args&&... args) {

return std::unique_ptr<T> {new T{std::forward<Args>(args)...}};
}

Given unique_ptr and shared_ptr, we can implement a complete “no naked new” policy.

<array>

An array, defined in <array>, is a fixed-size sequence of elements of a given type where the number of elements
is specified at compile time.
Thus, an array can be allocated with its elements on the stack, in an object, or in static storage. The
elements are allocated in the scope where the array is defined. An array is best understood as a built-in
array with its size firmly attached, without implicit, potentially surprising conversions to pointer types,
and with a few convenience functions provided.
When necessary, an array can be explicitly passed to a C-style function that expects a pointer.

bitset

Just use vector<bool> is ok.

bind()

A function adaptor takes a function as argument and returns a function object that can be used to invoke
the original function. The standard library provides bind() and mem_fn() adaptors to do argument binding,
also called Currying or partial evaluation.
double cube(double t) {

return t * t * t;
}
auto cube2 = bind(cube, 2);
int main() {

cout << cube2();
return 0;

}

using namespace placeholders;
void f(int,const string&);
auto g = bind(f, 2, _1);

// bind f()’s first argument to 2
f(2, "hello");
g("hello");

// also calls f(2, "hello");

The curious _1 argument to the binder is a placeholder telling bind() where arguments to the resulting
function object should go. In this case, g()’s (first) argument is used as f()’s second argument.

function

If we want to assign the result of bind() to a variable with a specific type, we can use the standard-library
type function.

0 CHAP 12 NUMBERICS 21

int f1(double);
function<int(double)> fct {f1};

// initialize to f1
int f2(int);
void user() {

fct = [](double d) { return round(d); };
// assign lambda to fct

fct = f1;
// assign function to fct

fct = f2;
// error : incorrect argument type

}

type function

A type function is a function that is evaluated at compile-time given a type as its argument or returning a
type. The standard library provides a variety of type functions to help library implementers and programmers
in general to write code that take advantage of aspects of the language, the standard library, and code in
general.
Oh it is too dificult.

Chap 12 Numberics
<cmath>

abs(x), ceil(x), floor(x), sqrt(x), cos(x), sin(x), tan(x), acos(x)

asin(x), atan(x), sinh(x), cosh(x), tanh(x), exp(x), log(x), log10(x)

<numeric>

• x = accumulate(b, e, i), x is the sum of i and elements of [b, e)
• ‘x = accumulate(b, e, i, f)’, accumulate using f instead of +
• x = inner_product(b, e, b2, i, f, f2)

random

A random number generator consists of two parts: 1. an engine that produces a sequence of random or
pseudo-random values. 1. a distribution that maps those values into a mathematical distribution in a range.

Chap 13 Cocurrency
The standard-library support is primarily aimed at supporting systems-level concurrency rather than directly
providing sophisticated higher-level concurrency models.
Main standard-library concurrency support facilities: threads, mutexes, lock() operations, packaged_tasks,
and futures. These features are built directly upon what operating systems offer and do not incur perfor-
mance penalties compared with those.
Do not consider concurrency a panacea.
Also, all the codes in this chapter when copiled, -pthread must be added, or it will CE.

0 CHAP 13 COCURRENCY 22

thread

void f() {
cout << "Hello";

}
struct F {

public:
void operator()(){ cout << "Parallel World! "; }

};
int main() {

thread t1{f};
thread t2{F()};
t1.join();
t2.join();
return 0;

}

const reference

void f(const vector<double>& v, double* res) {
cout << "Hello";

}

struct F {
public:

F(const vector<double>& vv, double* p):v{vv}, res{p} { }
void operator()(){ cout << "Parallel World! "; }

private:
const vector<double>& v;
double* res;

};

int main() {
vector<double> some_vec;
vector<double> vec2;

double res1, res2;

thread t1{f, cref(some_vec), &res1};
thread t2{F{vec2, &res2}};

t1.join();
t2.join();

cout << res1 << " " << res2 << endl;
return 0;

}

mutex

The access has to be synchromnized so that at most one task at a time has access. The fundamental element
of the solution is a mutex, a “mutual exclusion object”. A thread acquires a mutex using a lock() operation.
Do not add -O2 flags when compiling the code below, as it may cause no deadlock.
mutex m1, m2;

int de() {
// designed to delay some time

0 CHAP 13 COCURRENCY 23

int res;
for (int i = 0; i < 100000; i++)

for (int j = 0; j < 100000; j++)
res = i + j % 1007;

return res;
}

void f() {
cout << de();

// first the a.out will uses 200% of cpu
unique_lock<mutex> lck1{m1};

// then as the g aquired m2, aquiring m1
// f aquired m1, aquiring m2
// deadlock

cout << de();
unique_lock<mutex> lck2{m2};

}

void g() {
cout << de();
unique_lock<mutex> lck1{m2};
cout << de();
unique_lock<mutex> lck2{m1};

}

int main() {
thread t1{f};
thread t2{g};
t1.join();

// must add .join otherwise RE
t2.join();
return 0;

}

mutex or pass-by-value ? - ZEN

Communicating through shared data is pretty low level. In particular, the programmer has to devise ways
of knowing what work has and has not been done by various tasks. In that regard, use of shared data is
inferior to the notion of call and return. On the other hand, some people are convinced that sharing must
be more efficient than copying arguments and returns. That can indeed be so when large amounts of data
are involved.
But locking and unlocking are relatively expensive operations. On the other hand, modern machines are very
good at copying data, especially compact data, such as vector elements. So don’t choose shared data for
communication because of efficiency without thought and preferably not without measurement.

<chrono>

using namespace std::chrono;
// must add, as is it a sub-namespace of std

auto t0 = high_resolution_clock::now();
this_thread::sleep_for(milliseconds{100});
auto t1 = high_resolution_clock::now();

cout << duration_cast<nanoseconds>(t1-t0).count()
<< " nanoseconds passed\n";

There is no need to launch a thread; by default, this_thread refers to the one and only thread.

0 CHAP 13 COCURRENCY 24

The basic support for communicating using external events is proviede by condition_variables found in
<condition_variable>. A condition_variable is a mechanism allowing one thread to wait for another.
In particular, it allows a thread to wait for some condition (often called a event) to occur as the result of
work done by other threads.

mutex

void consumer(){
while(true) {

unique_lock<mutex> lck{mmutex};
// acquire mmutex

while (mcond.wait(lck))
// release lck and wait;
/* do nothing */;
// re-acquire lck upon wakeup

auto m = mqueue.front();
// get the message

mqueue.pop();
lck.unlock();

// release lck
// ... process m ...

}
}

void producer() {
while(true) {

Message m;
// ... fill the message ...
unique_lock<mutex> lck {mmutex};

// protect operations
mqueue .push(m);
mcond.notify_one();

// notify
}

// release lock (at end of scope)
}

future and promise

The important point about future and promise is that they enable a transfer of a value between two tasks
without explicit use of a lock; “the system” implements the transfer efficiently.
The basic idea is simple: When a task wants to pass a value to another, it puts the value into a promise.
Somehow, the implementation makes that value appear in the corresponding future, from which it can be
read (typically by the launcher of the task).
The main purpose of a promise is to provide simple put operations (called set_value() and
set_exception()) to match future’s get().
void f(promise<X>& px) {

// a task: place the result in px
try {

X res;
// ... compute a value for res ...

px.set_value(res);
}
catch (...) {

// oops: couldn’t compute res
px.set_exception(current_exception());

// pass the exception to the future’s thread

0 CHAP 13 COCURRENCY 25

// current_exception() refers to the caught exception
}

}

void g(future<X>& fx) {
// a task: get the result from fx
try {

X v = fx.get();
// if necessary, wait for the value to get computed

}
catch (...) {

// oops: someone couldn’t compute v
}

}

packaged_task

The packaged_task type is provided to simplify setting up tasks connected with futures and promises to
be run on threads.
inline double accum(double∗ beg, double∗ end, double init) {

// compute the sum of [beg:end) starting with the initial value init
return accumulate(beg, end, init);

}

double comp2(vector<double>& v) {
using Task_type = double(double∗, double∗, double);

// type of task
packaged_task<Task_type> pt0 {accum};
packaged_task<Task_type> pt1 {accum};

// package the task (accum)
future<double> f0 {pt0.get_future()};

// get hold of pt0’s future
future<double> f1 {pt1.get_future()};

// get hold of pt1’s future
double∗ first = &v[0];
thread t1 {move(pt0), first, first+v.size()/2, 0};
thread t2 {move(pt1), first+v.size()/2, first+v.size(), 0};

// start a thread for pt0
// start a thread for pt1

return f0.get()+f1.g et();
}

The reason that a packaged_task cannot be copied is that it is a resource handle: it owns its promise and
is (indirectly) responsible for whatever resoures its task may own.

async()

It is the simplest yet still among the most powerful. Treat a task as a function that may happen to run
concurrently with other tasks. It is far from the only model supported by the C++ standard library, but it
serves well for a wide range of needs.
double comp4(vector<double>& v) {

// spawn many tasks if v is large enough
if (v.siz e()<10000)

// is it wor th using concurrency?
return accum(v.begin(), v.end(), 0.0);

auto v0 = &v[0];
auto sz = v.siz e();
auto f0 = async(accum, v0, v0 + sz / 4, 0.0);

0 CHAP 14 HISTORY AND COMPATIBILITY 26

auto f1 = async(accum, v0 + sz / 4, v0+sz / 2, 0.0);
auto f2 = async(accum, v0 + sz / 2, v0+sz ∗ 3 / 4, 0.0);
auto f3 = async(accum, v0 + sz ∗ 3 / 4, v0 + sz, 0.0);
return f0.get()+f1.g et()+f2.g et()+f3.g et();

// collect and combine the results
}

Using async() , you don’t have to think about threads and locks. Instead, you think just in terms of tasks
that potentially compute their results asynchronously. There is an obvious limitation: Don’t even think of
using async() for tasks that share resources needing locking – with async() you don’t even know how many
thread s will be used because that’s up to async() to decide based on what it knows about the system
resources available at the time of a call.

threads at most

cout << thread::hardware_concurrency() << endl;

Chap 14 History and Compatibility
history

C++ was designed to provide Simula’s facilites for program organization. Simula is the initial source of
C++’s abstraction mechanisms. The class concept (with derived classes and virtual functions) was borrowed
from it. However, templates and exceptions came to C++ later with different sources of inspiration.

timeline

The work that led to C++ started in the fall of 1979 under the name “C with Classes.” Here is a timeline.
• 1979 Work on “C with Classes” started. The initial feature set included classes and derived classes,

public/private access control, constructors and destructors, and function declarations with argument
checking. The first library supported non-preemptive concurrent tasks and random number generators.

• 1984 “C with Classes” was renamed to C++. By then, C++ had acquired virtual functions, function
and operator overloading, references, and the I/O stream and complex number libraries.

• 1985 First commercial release of C++ (October 14). The library included I/O streams, complex
numbers, and tasks (non-preemptive scheduling).

• 1985 The C++ Programming Language was published.
• 1989 The Annotated C++ Reference Manual was published.
• 1991 The C++ Programming Language, Second Edition was published, presenting generic program-

ming using templates and error handling based on exceptions (including the “Resource Acquisition Is
Initialization”(RAII) general resource management idiom).

• 1997 The C++ Programming Language, Third Edition was published, introduced ISO C++, including
namespaces, dynamic_cast , and many refinements of templates. The standard library added the STL
framework of generic containers and algorithms.

• 1998 ISO C++ standard [C++,1998]. c++98
• 2002 Work on a revised standard, colloquially named C++0x, started.
• 2003 A “bug fix” revision of the ISO C++ standard was issued. A C++ Technical Report introduced

new standard-library components, such as regular expressions, unordered containers (hash tables), and
resource management pointers, which later became part of C++0x.

• 2006 An ISO C++ Technical Report on Performance was issued to answer questions of cost, predictabil-
ity, and techniques, mostly related to embedded systems programming [C++,2004].

• 2009 C++0x was feature complete. It provided uniform initialization, move semantics, variadic template
arguments, lambda expressions, type aliases, a memory model suitable for concurrency, and much more.
The standard library added several components, including threads, locks, and most of the components
from the 2003 Technical Report.

0 CHAP 14 HISTORY AND COMPATIBILITY 27

• 2011 ISO C++11 standard was formally approved [C++,2011].-std=c++11
• 2012 Work on future ISO C++ standards (referred to as C++14 and C++17) started.
• 2013 The first complete C++11 implementations emerged.
• 2013 The C++ Programming Language, Fourth Edition introduced C++11.

early years

Some event-driven simulations is needed, for which Simula would have been ideal, except for performance
considerations. Dealing directly with hardware and provide high-performance concurrent programming mech-
anisms for which C would have been ideal, except for its weak support for modularity and type checking.
The result of adding Simula-style classes to C, C with Classes, was used for major projects in which its
facilities for writing programs that use minimal time and space were severely tested. It lacked operator
overloading, references, virtual functions, templates, exceptions, and many, many details. The first use of
C++ outside a research organization started in July 1983.
In the early years, there was no C++ paper design; design, documentation, and implementation went on
simultaneously.
BS’s view was (and is) that we need every bit of help we can get from languages and tools: the inherent
complexity of the systems we are trying to build is always at the edge of what we can express.
C++ grew up in an environment with a multitude of established and experimental programming languages.
That was a deliberate policy to have the development of C++ problem driven rather than imitative.

iso c++

C++ grew by about 30% and the standard lib by about 100% between c++98 and c++11. Much of the
increase was due to more detailed specification, rather than new functionality.
C++11 added massively to the standard lib and pushed to complete the feature set needed for a programming
style that is a synthesis of the “paradigms” and idioms that have proven successful with c++98.
The overall aims for the c++11 efforts were: - make c++ a better language for systems programming and
lib building - make c++ easier to teach and learn (are you kidding me?)
A major effort was made to make concurrent systems programming type-safe and portable. This is involved
a memory model and a set of facilities for lock-free programming.

c++11 - language feature

1. Uniform and general initialization using {} -lists
2. Type deduction from initializer: auto
3. Prevention of narrowing
4. Generalized and guaranteed constant expressions: constexpr
5. Range- for -statement
6. Null pointer keyword: nullptr
7. Scoped and strongly typed enums : enum class
8. Compile-time assertions: static_assert
9. Language mapping of {} -list to std::initializer_list

10. Rvalue references (enabling move semantics)
11. Nested template arguments ending with >> (no space between the > s)
12. Lambdas
13. Variadic templates
14. Type and template aliases
15. Unicode characters
16. long long integer type
17. Alignment controls: alignas and alignof
18. The ability to use the type of an expression as a type in a declaration: decltype
19. Raw string literals

0 CHAP 14 HISTORY AND COMPATIBILITY 28

20. Generalized POD (“Plain Old Data”)
21. Generalized unions
22. Local classes as template arguments
23. Suffix return type syntax
24. A syntax for attributes and two standard attributes: [[carries_dependency]] and [[noreturn]]
25. Preventing exception propagation: the noexcept specifier
26. Testing for the possibility of a throw in an expression: the noexcept operator.
27. C99 features: extended integral types (i.e., rules for optional longer integer types); con-
28. catenation of narrow/wide strings; __STDC_HOSTED__ ; _Pragma(X) ; vararg macros and empty macro

arguments
29. __func__ as the name of a string holding the name of the current function
30. inline namespaces
31. Delegating constructors
32. In-class member initializers
33. Control of defaults: default and delete
34. Explicit conversion operators
35. User-defined literals
36. More explicit control of template instantiation: extern template s
37. Default template arguments for function templates
38. Inheriting constructors
39. Override controls: override and final
40. Simpler and more general SFINAE rule
41. Memory model
42. Thread-local storage: thread_local

c++11 - STL component

1. initializer_list constructors for containers
2. Move semantics for containers
3. A singly-linked list: forward_list
4. Hash containers: unordered_map , unordered_multimap , unordered_set , and unordered_multiset
5. Resource management pointers: unique_ptr , shared_ptr , and weak_ptr
6. Concurrency support: thread, mutexes, locks, and condition variables
7. Higher-level concurrency support: packaged_thread , future , promise , and async()
8. tuple s
9. Regular expressions: regex

10. Random numbers: uniform_int_distribution , normal_distribution, random_engine , etc.
11. Integer type names, such as int16_t , uint32_t , and int_fast64_t
12. A fixed-sized contiguous sequence container: array
13. Copying and rethrowing exceptions
14. Error reporting using error codes: system_error
15. emplace() operations for containers
16. Wide use of constexpr functions
17. Systematic use of noexcept functions
18. Improved function adaptors: function and bind()
19. string to numeric value conversions
20. Scoped allocators
21. Type traits, such as is_integral and is_base_of
22. time utilities: duration and time_point
23. Compile-time rational arithmetic: ratio
24. Abandoning a process: quick_exit
25. More algorithms, such as move() , copy_if() , and is_sorted()
26. Garbage collection ABI
27. Low-level concurrency support: atomic s

0 CHAP 14 HISTORY AND COMPATIBILITY 29

c++11 - deprecated feature

By deprecating a feature, the standards committee expresses the wish that the feature will go away.
• Generation of the copy constructor and the copy assignment is deprecated for a class with a destructor.
• It is no longer allowed to assign a string literal to a char* . Instead of char* as a target for assignment

and initializations with string literals, use const char* or auto
• C++98 exception specifications are deprecated:

– void f() throw(X,Y); // C++98; now deprecated
– The support facilities for exception specifications, unexcepted_handler , set_unexpected() ,

get_unexpected() , and unexpected() , are similarly deprecated. Instead, use noexcept.
• Some C++ standard-library function objects and associated functions are deprecated. Most relate to

argument binding. Instead use lambdas, bind , and function.
• The auto_ptr is deprecated. Instead, use unique_ptr.
• The use of the storage specifier register is deprecated.
• The use of ++ on a bool is deprecated.

c++11 - cast

C-style casts should have been deprecated in favor of named casts. The named casts are:
• static_cast : for reasonably well-behaved conversions, such as from a pointer to a base to its derived

class.
• reinterpret_cast : For really nasty, non-portable conversions, such as conversion of an int to a pointer

type. (Q: When to use?)
• const_cast : For casting away const .

Widg et* pw = static_cast<Widget*>(pv);
// pv is a void* supposed to point to a Widget

auto dd = reintrepret_cast<Device_driver*>(0xFF00);
// 0xFF is supposed to point to a device driver

char* pc = const_cast<char*>("Casts are inherently dang erous");

Expricit type conversion can be completely avoided in most high-level code, so considering every cast (however
expressed) a blemish on design is important.

c/c++ compatibility

With minor exceptions, C++ is a superset of C11. Most differences stem from C++’s greater emphasis on
type checking. Before 2016, C11 is still very new and most C code is Classic C or C99.

sidlings

Classic C has two main descendants: ISO C and ISO C++. Over the years, these languages have evolved
at different paces and in different directions. One result of this is that each language provides support
for traditional C-style programming in slightly different ways. The resulting incompatibilities can make
life miserable for people who use both C and C++, for people who write in one language using libraries
implemented in the other, and for implementers of libraries and tools for C and C++.

c -> c++

There are many minor incompatibilities between C and C++. All can cause problems for a programmer, but
all can be coped with in the context of C++. If nothing else, C code fragments can be compiled as C and
linked to using the extern “C” mechanism. The major problems for converting a C program to C++ are
likely to be:

• Suboptimal design and programming style.
• A void* implicitly converted to a T* (that is, converted without a cast).
• C++ keywords used as identifiers in C code.

0 CHAP 14 HISTORY AND COMPATIBILITY 30

• Incomparible linkage between code fragments compiled as C and code fragments compiled as C++.

style prob

1. Don’t think of C++ as C with a few features added. C++ can be used that way, but only suboptimally.
To get really major advantages from C++ as compared to C, you need to apply different design and
implementation styles.

2. Use the C++ standard library as a teacher of new techniques and programming styles. Note the
difference from the C standard library (e.g., = rather than strcpy() for copying and == rather than
strcmp() for comparing).

3. Macro substitution is almost never necessary in C++. Use const, constexpr, enum or enum class to
define manifest constants, inline to avoid functioncalling overhead, templates to specify families of
functions and types, and namespaces to avoid name clashes.

4. Don’t declare a variable before you need it, and initialize it immediately. A declaration can occur
anywhere a statement can, in for-statement initializers , and in conditions.

5. Don’t use malloc(). The new operator does the same job better, and instead of realloc(), try a
vector. Don’t just replace malloc() and free() with “naked” new and delete.

6. Avoid void*, unions, and casts, except deep within the implementation of some function or class.
Their use limits the support you can get from the type system and can harm performance. In most
cases, a cast is an indication of a design error.

7. If you must use an explicit type conversion, use an appropriate named cast (e.g., static_cast) for a
more precise statement of what you are trying to do.

8. Minimize the use of arrays and C-style strings. C++ standard-library strings, arrays , and vectors
can often be used to write simpler and more maintainable code compared to the traditional C style. In
general, try not to build yourself what has already been provided by the standard library.

9. Avoid pointer arithmetic except in very specialized code (such as a memory manager) and for simple
array traversal (e.g., ++p).

10. Do not assume that something laboriously written in C style (avoiding C++ features such as classes,
templates, and exceptions) is more efficient than a shorter alternative (e.g., using standard-library
facilities). Often (but of course not always), the opposite is true.

void*

In C, a void* may be used as the right-hand operand of an assignment to or initialization of a variable of
any pointer type; in C++ it may not.
void f(int n) {
int* p = malloc(n*siz eof(int));

/* not C++; in C++, allocate using ‘‘new’’ */
}

This is probably the single most difficult incompatibility to deal with. Note that the implicit conversion of a
void* to a different pointer type is not in general harmless:
char ch;
void* pv = &ch;
int* pi = pv;

// not C++
*pi = 666;

// overwr ite ch and other bytes near ch

If you use both languages, cast the result of malloc() to the right type. If you use only C++, avoid malloc().

	Chap 1 Basics
	Zen
	function overload
	sizeof
	ini
	auto
	scope
	constants
	range for statement
	reference
	nullptr

	Chap 2 User-Defined Types
	classes and structs
	union
	eunm

	Chap 3 Modularity
	exception
	rethrow exception
	static_assert

	Chap 4 Classes
	std::initializer_list
	pure virtual functions
	abstract type
	virtual functions
	explicit overiding
	benefits of inheritance
	copy and move
	move
	explicit
	suppressing operations
	Zen - GC and RAII

	Chap 5 Template
	begin and end
	instantiation
	value argument
	function template
	concepts and generic programming
	concept – C++ 17
	regular type
	function object
	lambda expr
	variadic template
	aliases

	Chap 6 Lib Overview
	Chap 7 String and Regex
	mutable
	short-string optimization
	basic_string
	regex
	smatch
	regex notation
	special char
	repeated
	character classes
	c++ var names
	greedy and non-greedy
	subpattern
	regex_iterator

	Chap 8 I/O
	io state
	user defined types
	filestream
	string stream

	Chap 9 Containers
	vector.reserve()
	store pointer | value?
	vector range checking
	Other containers

	Chap 11 Utilities
	unique_ptr
	shared_ptr
	make_shared()
	<array>
	bitset
	bind()
	function
	type function

	Chap 12 Numberics
	<cmath>
	<numeric>
	random

	Chap 13 Cocurrency
	thread
	const reference
	mutex
	mutex or pass-by-value ? - ZEN
	<chrono>
	mutex
	future and promise
	packaged_task
	async()
	threads at most

	Chap 14 History and Compatibility
	history
	timeline
	early years
	iso c++
	c++11 - language feature
	c++11 - STL component
	c++11 - deprecated feature
	c++11 - cast
	c/c++ compatibility
	sidlings
	c -> c++
	style prob
	void*

